7[2(3+4x)]2x=9+2(115x)

Simple and best practice solution for 7[2(3+4x)]2x=9+2(115x) equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 7[2(3+4x)]2x=9+2(115x) equation:


Simplifying
7[2(3 + 4x)] * 2x = 9 + 2(115x)
7[(3 * 2 + 4x * 2)] * 2x = 9 + 2(115x)
7[(6 + 8x)] * 2x = 9 + 2(115x)

Reorder the terms for easier multiplication:
7 * 2x[6 + 8x] = 9 + 2(115x)

Multiply 7 * 2
14x[6 + 8x] = 9 + 2(115x)
[6 * 14x + 8x * 14x] = 9 + 2(115x)
[84x + 112x2] = 9 + 2(115x)

Remove parenthesis around (115x)
84x + 112x2 = 9 + 2 * 115x

Multiply 2 * 115
84x + 112x2 = 9 + 230x

Solving
84x + 112x2 = 9 + 230x

Solving for variable 'x'.

Reorder the terms:
-9 + 84x + -230x + 112x2 = 9 + 230x + -9 + -230x

Combine like terms: 84x + -230x = -146x
-9 + -146x + 112x2 = 9 + 230x + -9 + -230x

Reorder the terms:
-9 + -146x + 112x2 = 9 + -9 + 230x + -230x

Combine like terms: 9 + -9 = 0
-9 + -146x + 112x2 = 0 + 230x + -230x
-9 + -146x + 112x2 = 230x + -230x

Combine like terms: 230x + -230x = 0
-9 + -146x + 112x2 = 0

Begin completing the square.  Divide all terms by
112 the coefficient of the squared term: 

Divide each side by '112'.
-0.08035714286 + -1.303571429x + x2 = 0

Move the constant term to the right:

Add '0.08035714286' to each side of the equation.
-0.08035714286 + -1.303571429x + 0.08035714286 + x2 = 0 + 0.08035714286

Reorder the terms:
-0.08035714286 + 0.08035714286 + -1.303571429x + x2 = 0 + 0.08035714286

Combine like terms: -0.08035714286 + 0.08035714286 = 0.00000000000
0.00000000000 + -1.303571429x + x2 = 0 + 0.08035714286
-1.303571429x + x2 = 0 + 0.08035714286

Combine like terms: 0 + 0.08035714286 = 0.08035714286
-1.303571429x + x2 = 0.08035714286

The x term is -1.303571429x.  Take half its coefficient (-0.6517857145).
Square it (0.4248246176) and add it to both sides.

Add '0.4248246176' to each side of the equation.
-1.303571429x + 0.4248246176 + x2 = 0.08035714286 + 0.4248246176

Reorder the terms:
0.4248246176 + -1.303571429x + x2 = 0.08035714286 + 0.4248246176

Combine like terms: 0.08035714286 + 0.4248246176 = 0.50518176046
0.4248246176 + -1.303571429x + x2 = 0.50518176046

Factor a perfect square on the left side:
(x + -0.6517857145)(x + -0.6517857145) = 0.50518176046

Calculate the square root of the right side: 0.710761395

Break this problem into two subproblems by setting 
(x + -0.6517857145) equal to 0.710761395 and -0.710761395.

Subproblem 1

x + -0.6517857145 = 0.710761395 Simplifying x + -0.6517857145 = 0.710761395 Reorder the terms: -0.6517857145 + x = 0.710761395 Solving -0.6517857145 + x = 0.710761395 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '0.6517857145' to each side of the equation. -0.6517857145 + 0.6517857145 + x = 0.710761395 + 0.6517857145 Combine like terms: -0.6517857145 + 0.6517857145 = 0.0000000000 0.0000000000 + x = 0.710761395 + 0.6517857145 x = 0.710761395 + 0.6517857145 Combine like terms: 0.710761395 + 0.6517857145 = 1.3625471095 x = 1.3625471095 Simplifying x = 1.3625471095

Subproblem 2

x + -0.6517857145 = -0.710761395 Simplifying x + -0.6517857145 = -0.710761395 Reorder the terms: -0.6517857145 + x = -0.710761395 Solving -0.6517857145 + x = -0.710761395 Solving for variable 'x'. Move all terms containing x to the left, all other terms to the right. Add '0.6517857145' to each side of the equation. -0.6517857145 + 0.6517857145 + x = -0.710761395 + 0.6517857145 Combine like terms: -0.6517857145 + 0.6517857145 = 0.0000000000 0.0000000000 + x = -0.710761395 + 0.6517857145 x = -0.710761395 + 0.6517857145 Combine like terms: -0.710761395 + 0.6517857145 = -0.0589756805 x = -0.0589756805 Simplifying x = -0.0589756805

Solution

The solution to the problem is based on the solutions from the subproblems. x = {1.3625471095, -0.0589756805}

See similar equations:

| V=8212 | | y=4x^2+10x+5 | | 9x+10y=30 | | 1+2x/x=x-2/-3 | | (1/5)((5/2)x-10)=4(x+3) | | 4x^5-12x+9=0 | | 5x+-3y=12 | | 5x^2-100x+455=0 | | 7(x+5)-8=31-5x-4+12x | | 4x+2y+z=175 | | -3+8(x-3)=15x+2-7x | | 3-2x-(-7)=4x+10 | | -9-4=-7+x | | 6x^2+36x+18=0 | | 7(a-7)+18=5(a-5) | | 6(2x+-1)+3=x+7 | | 3(6n-4)+9n= | | 3x^2+72x+402=0 | | 5+3x+(-3)=x-(-4) | | 9x-8=6x+37 | | 5x-(-21)=x-(-19) | | -58=y/4 | | ((6-14)+4)*4= | | -58=-6y | | 5x-(21)=x-(-19) | | 14e^2+4x=112 | | x-(-5)=6x+10 | | 42/-6 | | a+b-a+2b= | | 1/5x+3=14 | | 4x^2-8x-77=0 | | 3x-(-1)=-16 |

Equations solver categories